HOT APPLICATIONS:

PCI, Plug and Play, PCMCIA

- PCI (Peripheral Component Interconnect)
- Plug and Play ISA
- PCMCIA
- Designing for High-Volume, Low-Cost

Peripheral Component Interconnect (PCI)

Why PCI?

- New applications—like video—demand higher bandwidth
- Existing ISA architecture too slow
 - Stuck with slow, 8-/16-bit performance
 - Bottleneck for I/O-intensive applications

PCI Technical Challenges

- 100% Compliance **REQUIRED** for:
 - Add-in boards to be plugged into ANY PCI system
 - System to accept PCI add-in card from ANY manufacturer

"Reflective-Wave" Switching

- \blacksquare PCI BUS is unterminated, key parameter is Z_0
- Signals *must* switch on *first* reflected wave

- Signal propagation delays availability of signals
- Signals are compliant when they follow a switching trajectory that defines both current and voltage (V/I Curves)

Bus Loading

- Loading
 - PCI BUS is unterminated, key parameter is capacitance
 - Maximum limit is 10 loads @ 10 pF each per bus pin
 - Add-on cards restricted to 2 loads max
 - Single device pin per board pin
 - Expansion board (bridge) is needed to exceed max limit
- Xilinx input capacitance is measured to beless than 10 pF per device pin for plastic packages
 - EPLDs: XC7300-10 and faster in PQFP
 - FPGAs: XC3100A-2, XC4000E-3 and faster in PQFP

Input/Output Drive Specifications

- PCI I/O drive is defined to correctly manage signal reflection within the impedance requirements of the PCI bus
- PCI defines a region on a V/I diagram withspecific measurement points

Composite Input / Output Timing

Detailed PCI Timing Specifications

	5 V Signaling		3.3 V Signaling		Units
Parameter	min	max	min	max	
t _h	0		0		nsec
t _{su} (bussed)	7		7		nsec
t _{su} (point-to-point)	10		12		nsec
t _{val} (bussed)	2	11	2	11	nsec
t _{val} (point-to-point)	2	12	2	11	nsec
t _{on}	2		2		nsec
t _{off}		28		28	nsec

REFERENCE

PCI Three-state Buffer Control:

The Often-Missed Critical Issue

- Turn-around cycles (high-impedance state) inserted at each point where signal drive is passed from one agent to another
- Agents require multiple, independent output enables for different signal classes
- Most programmable logic devices have enough output enables for basic PCI interface but are there enough for the rest of <u>your</u> logic?

Class of Signals	Signal Name	Initiator/Target	Target
Address Data	AD[31:0]	V	√
Framing	FRAME#, CBE[3:0]#	$\sqrt{}$	
Parity	PAR	V	1
Parity Error	PERR#	V	V
Master Handshake	IRDY#	$\sqrt{}$	
Target Handshake	TRDY#,DEVSEL#,STOP#	V	V
Total		6	4

Xilinx PCI Compliant Solutions

	XC7300	XC3100A-2	XC4000E-3	
Issue	-10/7/5	XC3400	XC4400	
Design Method	PAL/CPLD	FPGA	/ASIC	
Process	CMOS	CM	OS	
Technology	EPROM	SRAM		
PCI Compliance	100%	100%	100%	
Gate Density	up to 5K	up to 7.5K	up to 25K	
Target Interface	V	$\sqrt{}$		
Initiator Interface	Simple	Simple	Full	
Configuration	Internal/	Internal/	Full	
Registers	External	External	Internal	
Signaling	5/3.3V	5V		
Bus Width	32 bit	32 bit 32/64 bit		

PCI Target in XC3164A-2 FPGA

Worst Case Design at 33 MHz

DEVSEL# asserted at clock 5

TRDY# asserted at clock 6

- Requires 15 ns SRAMs for one clock burst
- Responds to memory & configuration CBE
- Asserts STOP# on address counter overflow and initiator read wait states

XC3164A PCI Interface Block Diagram

- Pipelined data path
- De-multiplexed address/data bus

XC4000E and PCI

XC4000E FPGA

- 100% PCI compliant
- On-chip RAM for
 - Configuration memory
 - FIFOs
- High-density designs
 - Target/Initiator in a single device
- Cost-reduction strategy
 - PCI compliant XC4400 HardWire gate arrays
 - 100% drop-in compatible with XC4000E

MuTech Video Digitizer PCI Card

- Required 100% PCI compliance using XC3195A
- Integrated specific features not found in PCI chipsets
- Contains PCI interface, capture control, memory control, etc.

PCI Special Interest Group PCI Test Board

■ Tests PCI system compliance

Xilinx PCI Support

- Xilinx is an active member of PCI Special Interest Group (PCI-SIG)
- PCI market backgrounder
- PCI compliance checklists
- XC7300 EPLD App. Note/Design
 - VHDL and ABEL
- XC3164A-2 FPGA App. Note/Design
 - Verilog source files for Exemplar Logic CORE, or
 - VIEWlogic schematics
- EMAIL: pci@xilinx.com

- Literature requests
- Technical questions

	XC7300	XC3100A	XC4000E
Compliance			3Q '95
Checklist			'95
Target App Note			
and Design Files	$\sqrt{}$	$\sqrt{}$	
Initiator/Target		3Q	3Q '95
App Note		'95	'95

Plug and Play ISA Interface

Why Plug and Play ISA?

- No mechanism for allocating resources among ISA cards in a system
- Current ISA cards require "jumper" to control memory and I/O space, to steer DMA and interrupts
- Other bus standards are already "Plug and Play" (NuBus, Micro Channel, EISA, PCI)
- Plug and Play ISA retrofits same capabilities into the industry's most popular bus standard
- Plug and Play ISA cards will co-exist with today's ISA cards
- Windows '95 and Plug and Play BIOS coming soon

Plug and Play ISA Technical Challenges

- No significant technical challenges (except understanding the specification)
- Every ISA board has different interface requirements
- Need low-cost solution for high-volume ISA market

Plug and Play Configuration Sequence

- Cards power-on in quiescent state
- Plug and Play software sends initiation key telling all cards to begin configuration process
- Plug and Play software isolates one card at a time
- Assigns a "handle" to the isolated card and reads its resource requirements
- After reading all cards' requests, assigns conflict-free resources to each card
- Activates all Plug and Play ISA cards and removes them from configuration mode

Isolation Protocol

72-bit Serial Identifier

	Check- sum	Serial Number					Vend	or ID	
I	Byte 0	Byte 3	Byte 2	Byte 1	Byte 0	Byte 3	Byte 2	Byte 1	Byte 0
Ī	7:0	7:0	7:0	7:0	7:0	7:0	7:0	7:0	7:0
•									

Shift Direction

- Unique for every card
- Recorded internally or in EEPROM
- Isolation State Machine
- All non-isolated cards compete in each isolation round

REFERENCE

Xilinx Plug and Play Solution

Xilinx Plug and Play ISA Application Notes

- "A Plug and Play Interface with Xilinx FPGAs" Application Note/Design
 - Fully compatible with Plug and Play ISA 1.0a
 - Supports 8-bit ISA bus interface, expandable to 16 bits
 - Supports all 7 DMA channels
 - Supports all 15 IRQ channels
 - Optional serial EEPROM interface for serial ID and card data
 - Built using XC4003 or XC5200
 - VIEWdraw schematics and ABEL source files
- "Plug and Play ISA" background
- E-Mail: PnP@xilinx.com
 - Literature requests
 - Technical questions

PCMCIA

<u>Personal Computer Memory Card Interface Association</u> "<u>People Can't Memorize Computer Industry Acronyms</u>"

Why PCMCIA?

- Originally developed as a memory card interface
- Extended to add I/O and other capabilities
- Popular in lap-tops and portable systems
- Ideally, cards are interchangeable and easy to install
- Applications in industrial markets
- PC Card '95 Specification adds:
 - CardBus 32-bit bus master interface
 - 3.3 volt cards (Xilinx ZERO+ 3.3 volt devices)
 - Multifunction cards

PCMCIA Technical Challenges

- Advanced Packaging
 - Three defined card thicknesses
 - Type 1: 3.3 mm
 - Type 2: 5.0 mm
 - Type 3: 10.5 mm
 - Need Very-Thin Packaging
 - VQFP (1.27 mm high) for double-sided Type 1 cards
 - TQFP (1.55 mm high) for single-sided Type 1 cards
 - Devices requiring a programmer are difficult to handle
- Need low-cost solution for high-volume PCMCIA market
- Short life cycles need fast time-to-volume

Xilinx Advance Surface-Mount Packaging Options

- Wide variety of devices available in Thin Quad Flat Pack (TQFP) and Very-thin Quad Flat Pack (VQFP) packages
 - XC3000A (VQ64, VQ100, TQ100, TQ144, TQ176)
 - XC4000 (VQ100, TQ144)
 - XC5200 (VQ100, TQ144) Up to 10,000 gates!
- Serial PROM available in easy-to-program 8-pin very-thin SOIC
- FPGAs are in-system programmable—mount directly on board, no programming
- 3.3 volt versions available including Xilinx HardWire gate arrays

PCMCIA Products Using Xilinx

STORIES AND ASSOCIATION OF THE PROPERTY OF THE

New Media

Socket Communications

- Over 100 volume-production designs to date
 - Mostly XC2000, XC3000A FPGAs (XC4000 in many new designs)
 - XC2318 and XC3x00 HardWire gate arrays

Xilinx PCMCIA Application Notes

- PCMCIA backgrounder
- "Speed PCMCIA Modem Design with FPGAs"
 - Application Note
 - VIEWlogic schematics
- "Incorporating CIS into XC4000 PCMCIA Designs"
- E-Mail: pcmcia@xilinx.com
 - Literature requests
 - Technical questions

Xilinx Third-Party Support for PCMCIA

Complete PCMCIA development systems, debugger software and tools available from:

B&C Microsystems

750 North Pastoria Avenue Sunnyvale, CA 94086 (408) 730-5511

Focus Microsystems

1735 N. First Street Suite 307 San Jose, CA 95112 (408) 436-2336

Mobile Media Research

1977 O'Toole Ave B-207 San Jose, CA 95131 (408) 428-0310

REFERENCE

■ PCMCIA recommended design guide for host and card systems:

Sycard Technology

651 Smoke Tree Way Sunnyvale, CA 94086 (408) 247-0730

Designing for High-Volume, Low-Cost Applications

- Computer solutions are usually high-volume applications
- Big opportunities in new markets
 - Specifications are in a state of flux
 - First-to-volume reaps the profits
 - Later in life cycle, need to compete on price
- The Winning Combination: Xilinx "Design Once" Methodology
 - Xilinx programmable solutions for development and initial production
 - Cuts your time-to-market and provides maximum flexibility
 - Migrate design to Xilinx HardWire gate arrays for cost reduction
 - 100% compatibility reduces your risk

Conclusion

- Xilinx provides successful solutions for important computer applications
 - PCI
 - Plug and Play ISA
 - PCMCIA
- Design assistance improves your time-to-volume
 - Technical requirements understood and addressed
 - Application notes and reference designs
 - Examples of successful end-user products
- "Design Once" methodology provides start-to-finish success for highvolume, low-cost applications
 - Xilinx programmable logic
 - Xilinx HardWire gate arrays

