
July 1997PERSONAL ENGINEERING 75

Understanding programmable logic means
digesting its alphabet soup

EXPERT COLUMN CAE

Steven K Knapp is the founder and presi-
dent of OptiMagic Logic Design Solutions
Inc (Aptos, CA, info@optimagic.com), a firm
that develops intellectual property and de-
sign software for programmable logic. Prior
to founding this firm he held various appli-
cations, engineering and management
positions at Xilinx and Intel’s former pro-
grammable-logic division.

Fig 1—The FPGA
architecture uses
many relatively

small logic
blocks with

independent I/O
blocks.

Steve Knapp

If you’re not already using high-den-
sity programmable logic, it’s prob-
ably time to start. Prices for both de-
vices and tools are dropping to where
they’re attractive alternatives. In case
you haven’t been watching, a mas-
sive battle is taking place for su-
premacy in the programmable-logic
industry. The total market rocketed
past the $1 billion mark as industry
titans Xilinx, Altera, Actel, Lattice,
Vantis and others fight for precious
market share. As a result, device
prices have dropped dramatically. A
2000-gate device that cost more than
$100 in 1986 now sells for less than $5
in volume. Similarly, dramatic in-
creases in density pushed gate counts
well past the 50,000 mark.

Likewise, development software
no longer costs between $5000 and
$10,000. For $500 or less, a designer
gets design-entry, implementation
and simulation capabilities. Granted,
a $500 package won’t provide all the
options of a $5000 system, but it does

provide sufficient capabilities for
moderate-density designs. Further,
broad support for programmable
logic has emerged from CAE software
companies. Even more importantly,
high-end CAE suppliers now provide
alternatives under Win95 and NT.

Thanks to these advances, pro-
grammable logic has become a main-
stream technology. Look through
electronics magazines, and you can’t
miss ads for boards using it—even
systems selling for less than $100. An-
other sign is that intellectual prop-
erty (IP) companies now target their
cores or hard macros for program-
mable logic as well as gate arrays.

For engineering managers, it’s im-
portant to note that most recent EE
graduates have gained experience
with programmable logic as part of
their undergraduate curriculum. Most
recent graduates have the knowledge
and skills to use these devices today.

Using programmable logic

Deciding whether or not to use
programmable logic depends on the
application. If a design requires 300
to 100,000 gates and operates below
roughly 60 MHz, the answer is a re-
sounding yes. Multiple devices con-
quer higher density designs but at a

July 199776 PERSONAL ENGINEERING

CAE

EXPERT COLUMN

greater expense, especially for high-
volume applications.

Because the logic is on-site pro-
grammable, design modifications and
updates are far easier than with many
other technologies. Most of a design
resides on one or several chips,
thereby reducing the number of
“blue-wire” fixes tacked to the back-
side of a board. Also, changes cost
little or nothing. At worst, you might
throw away a few one-time program-
mable devices. Contrast this low cost
of change to a gate array where modi-
fications can cost $10,000 and weeks
if not months of delay.

Further, many high-density de-
vices are reprogrammable while in a
system. Changes are practically free,
and you can even make them when a
board is deployed in the field. Some
designers use this capability to adapt
a board to unique configurations.
Instead of shipping four different
models for four applications, some
companies ship one board that per-
forms multiple tasks. This practice re-
duces engineering costs and simpli-
fies manufacturing.

Design changes with program-
mable logic are also quick. An engi-
neer can make a modification,
recompile a design and download the
change into the device in anywhere
from 5 min to a few hours, depend-
ing on the device size and technology.

Obviously, programmable logic re-

Table 1—
Engineers can
select any
combination of
programming
method and
granularity
architecture by
their choice of
programmable-
logic vendors.

places other technologies. Because of
its nature, designers use it in novel
applications to replace or enhance
existing processors. In some applica-
tions, especially DSP, specific com-
pute-intensive algorithms consume
most of a processor’s capability. Some
designs implement these algorithms
in hardware (with programmable
logic) to offload time-critical or re-
petitive tasks. This specialized hard-
ware frees the processor to perform
other useful functions. For example,
a 16-tap FIR filter in a field-program-
mable gate array (FPGA) can outper-
form a standard DSP chip by a factor
of ten or more. In another example, a
board full of FPGAs outperformed a
Cray supercomputer in a pattern-
matching application for the Human
Genome Project. Programmable logic
is also an enabling technology for a
new field called reconfigurable com-
puting in which a designer tailors the
processing element to the specific ap-
plication. This customization provides
significantly higher performance than
is possible with standard processors.

Understanding the lingo

Like most any technology, pro-
grammable logic has its unique jar-
gon. While by no means exhaustive,
the following terms provide a quick
introduction to important concepts.

FPGA (Field-programmable Gate
Array)
A generic description of an FPGA is a
programmable device with an inter-
nal array of logic blocks, surrounded
by a ring of programmable I/O
blocks, connected by programmable
interconnect (Fig 1). The secret to den-
sity and performance in these devices
lies in the circuitry of their logic blocks
and on the performance and effi-
ciency of their routing architecture.

This group breaks down into a
wide variety of subarchitectures, but
you’ll find two primary classes of
FPGA architectures. First, coarse-
grained architectures consist of fairly
large logic blocks, often containing
two or more lookup tables and two
or more flip-flops. In these architec-
tures, a 4-input lookup table (think of
it as a 16 x 1 ROM) implements the
actual logic.

The other architecture is called
fine-grained. These devices hold a
large number of relatively simple
logic blocks. Each block usually con-
tains a flip-flop and either a 2-input
logic function or a 4:1 multiplexer.
These devices excel at bit-serial func-
tions such as shift registers, corner
benders or serial arithmetic, and they
offer benefits for logic-synthesis-gen-
erated designs.

Another difference in architectures
concerns the underlying process tech-
nology. Currently, the highest-den-

ygolonhceTssecorP

yromeMcitatS esufitnA hsalF

deniarg-eniF
erutcetihcrA erutcetihcrA erutcetihcrA erutcetihcrA erutcetihcrA

letcA)2353-822)008(AC,elavynnuS(
lemtA)1130-144)804(AC,esoJnaS(

alorotoM)2473-944)008(ZA,xineohP(
xniliX)8777-955)804(AC,esoJnaS(

letcA)2353-822)008(AC,elavynnuS(
dacyZfonoisivida,dleifetaG

)2505-818)008(AC,tnomerF(

deniarg-esruoC
erutcetihcrA erutcetihcrA erutcetihcrA erutcetihcrA erutcetihcrA

)4017-498)804(AC,esoJnaS(aretlA
pihCanyD)0013-184)804(AC,elavynnuS(

)7442-273)008(AP,nwotnellA(tnecuL
)8777-955)804(AC,esoJnaS(xniliX

cigoLkciuQ)0004-099)804(AC,elavynnuS(

July 1997PERSONAL ENGINEERING 77

CAE

EXPERT COLUMN

Fig 2—The CPLD (or EPLD)
architecture uses a few large, PAL-
like blocks with I/O fixed inside of
each block.

sity FPGAs use static memory
(SRAM) technology, similar to micro-
processors. The other common pro-
cess technology is antifuse, which has
benefits for programmable intercon-
nect (see Table 1).

SRAM-based devices are inher-
ently reprogrammable, even in-
system. A configuration memory
holds the program that defines how
each logic block functions, whether
I/O blocks serve as inputs and out-
puts and how blocks connect to each
other. An FPGA either self-loads its
configuration program, or an exter-
nal processor downloads the pro-
gram. When self-loading, an FPGA
addresses a standard byte-wide
memory much like a processor or uses
a special sequential-access serial
PROM. When a processor downloads
a program, an FPGA appears much
like a standard microprocessor pe-
ripheral. The configuration time is
typically < 200 msec, depending on
device size and configuration method.

In contrast, antifuse devices are
one-time programmable (OTP). Once
programmed, they can’t be modified
but do retain their program when
power is off. Antifuse devices require
a specialized or a high-end program-
mer, as most programmers don’t sup-
port antifuse.

Many course-grained FPGAs also
contain system-level features to boost
performance or to simplify system
design. For instance, dedicated carry
logic boosts performance for arith-
metic functions and counters. Bidi-
rectional busing mirrors what you’ll
find on many boards and systems,
allowing easy integration of bused
registers and other logic elements.
Further, on-chip RAM simplifies reg-
ister files, FIFOs and small data-buff-
ering applications.

Generally, FPGAs have many more

registers and I/O than CPLDs and
typically use less power. FPGAs are
usually best for datapath-oriented
design but don’t have the fast pin-to-
pin performance associated with
CPLDs.

CPLD (Complex Programmable
Logic Device)
In concept, CPLDs consist of mul-
tiple PAL-like logic blocks intercon-
nected with a programmable switch
matrix (Fig 2). Typically, each logic
block contains four to 16 macrocells
depending on the vendor and the
architecture.

A macrocell on most modern
CPLDs contains a sum-of-products
combinatorial logic function and an
optional flip-flop. The combinatorial
logic function typically supports four
to 16 product terms with wide fan-in.
In other words, a macrocell function
can have many inputs, but the com-
plexity of the logic function is lim-
ited. Contrast this structure to an
FPGA logic block where complexity
is unlimited, but the lookup table has
only four inputs.

CPLDs provide a natural migra-
tion path for PAL designers seeking
higher density. They offer a PAL-like
architecture, and generally four or
more PALs comfortably fit into a
CPLD. Most CPLDs support PAL de-
velopment languages such as Abel,
Cupl and Palasm.

CPLDs are generally best for con-
trol-oriented designs due in part to
their fast pin-to-pin performance. The
wide fan-in of their macrocells makes
them well-suited to complex, high-
performance state machines.

One major variation among CPLD
architectures concerns how they deal
with insufficient product terms. In
some architectures, when the num-
ber of product terms a design requires
exceeds the number available in the

macrocell, design software borrows
terms from an adjoining macrocell.
When borrowing terms, the adjoin-
ing macrocell might not be useful any
longer in some architectures, while
in others, the macrocell retains some
basic functionality. In addition, bor-
rowed product terms usually increase
propagation delay.

Another difference deals with the
number of connections within the
switch matrix. A switch matrix sup-
porting all possible connections is
fully populated, while a partially
populated switch supports most con-
nections. The number of connections
within the matrix determines how
easily a design fits in a given device.
With a fully populated switch ma-
trix, a design routes even with a ma-
jority of the device resources used

July 199778 PERSONAL ENGINEERING

CAE

EXPERT COLUMN

and with fixed I/O pin assignment.
Generally, delays within a fully popu-
lated switch matrix are fixed and pre-
dictable.

A device with a partially popu-
lated switch matrix might present
problems to tools when routing com-
plex designs. Also, it might be diffi-
cult to make design changes in these
devices without altering the pinout.
Routing to a fixed pinout is impor-
tant because it’s easier to change the
internals of a PLD than to relay out a
circuit board. Though a partially
populated switch matrix is less ex-
pensive to manufacture, it might be
more difficult to use. The delays within
a partially populated matrix can’t be
fixed and aren’t easy to predict.

CPLDs are based on one of three
process technologies—EPROM,
EEPROM or FLASH. EPROM-based
CPLDs are usually one-time program-
mable (OTP) unless they come in a
UV-erasable windowed package. As
is the case with antifuse FPGAs, you
must use a high-end programmer to
program CPLDs.

EEPROM and FLASH processes
are erasable technologies. However,
not all EEPROM- and FLASH-based
devices are programmable while sol-
dered on a board. In-system program-
mability (ISP) requires special on-chip
programming logic, and not all
CPLDs come with it, even when built
with EEPROM and FLASH technolo-
gies. You can erase and program those
lacking that circuitry in a device pro-
grammer. Those with the circuitry ei-
ther use a vendor-proprietary inter-
face or a JTAG (IEEE 1149.1) inter-
face for programming.

EPLD (Erasable Programmable
Logic Device)
See CPLD. Some companies prefer
the term EPLD, others use CPLD. Oth-
erwise they’re essentially the same.

Fitting
Fitting is a term usually associated
with CPLDs. It includes the process of
optimizing and grouping logic ele-
ments for a design to best fit available
resources as well as allocating logic to
specific macrocells and interconnect-
ing signals through the switch matrix.

ISP (In-System Programmable)
ISP is generally associated with CPLD
devices based on EEPROM or FLASH
technology that you can program in
the system. However, this term also
applies to all FPGAs based on static
memory (SRAM) technology, which
is inherently in-system programmable.

Logic Block/Cell
A logic block or cell is the basic build-
ing block. In an FPGA, the logic block
typically contains two or more LUTs
and two or more flip-flops. The com-
bination of a LUT and a flip-flop is
sometimes called a logic cell. In a
CPLD, the logic block typically con-
tains four to 16 macrocells.

LUT (Lookup Table)
A lookup table is a common logic
element in most coarse-grained
FPGAs. Essentially, it’s equivalent to
a small ROM. For example, a 4-input
LUT is equivalent to a 16x1 ROM,
with the four logic inputs becoming
the ROM’s address lines. The ROM’s
contents are the logical function of
those four inputs. Regardless of com-
plexity, a logic function with four in-
puts fits into a 4-input LUT and has a
fixed delay. For example, a LUT-
based implementation of an inverter
and a 4-input XOR function have the
same delay.

OTP (One-time Programmable)
This term applies to any device you
can program only once. They include
EPROM-based devices in windowless
packages and all antifuse-based de-
vices.

Partitioning/Mapping
In partitioning or mapping, design
software reduces, optimizes and
groups logical elements within a de-
sign to best fit into the logic blocks or
resources available on the program-
mable-logic device.

Placement
A term usually associated with
FPGAs, placement is the process of
searching for the best location to place
a logic block. For FPGAs, it directly
affects the performance of the end
design and the amount of intercon-
nect resources required.

Routing
The term routing appears as either a
noun or verb. As a noun, it refers to
the interconnect resources available
on a device. These resources are simi-
lar to the traces on a circuit board
and connect logic blocks and I/O
blocks to form a user design. As a
verb, routing refers to the process of
interconnecting logic and I/O blocks.
This process is generally compute-
intensive, especially for large FPGA
devices.

Additional terms

The preceding list is by no means
exhaustive. Each vendor has its own
list of trademarked names for these
same features. A more extensive glos-
sary of terms, including vendor-spe-
cific jargon, is available on the web at
www.pldsite.com/gloss.htm. PE&IN

Editorial Feedback
This article’s value to me was:

High—275 Average—276 Low—277

